我亦无他,惟手熟尔
图像生成:目标放置 图像生成:目标放置
阅读论文一.TopNet: Transformer-based Object Placement Network for Image Compositing(CVPR2023)论文链接 参考链接 摘要作者调研自动放置目标到背景进行图像合成的
2024-06-27
Commonsense Prototype for Outdoor Unsupervised 3D Object Detection (CVPR 2024) Commonsense Prototype for Outdoor Unsupervised 3D Object Detection (CVPR 2024)
Commonsense Prototype for Outdoor Unsupervised 3D Object Detection (CVPR 2024)论文链接 代码链接 第一作者主页 摘要无监督三维目标检测的主流方法是基于聚类的伪标签
2024-04-28
弱监督下的三维目标检测(激光点云篇) 弱监督下的三维目标检测(激光点云篇)
弱监督下的三维目标检测(激光点云篇,接单目篇)二、基于激光点云的三维目标检测第一篇:VS3DWeakly Supervised 3D Object Detection from Point Clouds(2020) 论文链接 代码链接 第
2024-04-25
弱监督下的三维目标检测(单目篇) 弱监督下的三维目标检测(单目篇)
弱监督下的三维目标检测(单目篇)一、基于单目图像的三维目标检测3D Object Detection from Images forAutonomous Driving: A Survey 第一篇:WeakM3DTowards Weakly
2024-04-24
室外场景的点云对比学习方法(CO^3,结合代码) 室外场景的点云对比学习方法(CO^3,结合代码)
室外场景的点云对比学习方法(CO^3,结合代码)对比学习(Contrastive Learning)方法综述对比学习(Contrastive Learning),必知必会论文地址:CO^3: Cooperative Unsupervised
2024-03-15
Learning Inter-Superpoint Affinity for Weakly Supervised 3D Instance Segmentation(未完待续) Learning Inter-Superpoint Affinity for Weakly Supervised 3D Instance Segmentation(未完待续)
Learning Inter-Superpoint Affinity for Weakly Supervised 3D Instance Segmentation(未完待续)摘要由于三维点云的标注很少,如何学习点云的区分特征来分割目标实例是
2023-12-04
Superpoint Transformer for 3D Scene Instance Segmentation(未完待续) Superpoint Transformer for 3D Scene Instance Segmentation(未完待续)
Superpoint Transformer for 3D Scene Instance Segmentation(未完待续)论文地址代码地址论文解读 摘要现有的大多数方法通过扩展用于3D对象检测或3D语义分割的模型来实现3D实例分割。然而
2023-12-03
Learning Superpoint Graph Cut for 3D Instance Segmentation (未完待续) Learning Superpoint Graph Cut for 3D Instance Segmentation (未完待续)
Learning Superpoint Graph Cut for 3D Instance Segmentation (未完待续)论文地址代码地址(待发布) 摘要由于点云中目标的复杂局部几何结构,3D实例分割是一项具有挑战性的任务。在本文中
2023-12-02
Efficient LiDAR Point Cloud Oversegmentation Network Efficient LiDAR Point Cloud Oversegmentation Network
Efficient LiDAR Point Cloud Oversegmentation Network论文地址补充材料代码地址(待发布) 摘要点云过分割是一项具有挑战性的任务,因为它需要产生具有感知意义的点云分区(即超点)。现有的大多数过
2023-12-01
BEVDet系列(持续更新) BEVDet系列(持续更新)
BEVDet系列BEVDet系列源码解读BEVDet网络结构BEVDet4D 强大而不失优雅的三维目标检测范式BEVDet4D讲解 BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Obj
2023-11-30
1 / 3